If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+13x/2=42
We move all terms to the left:
x^2+13x/2-(42)=0
We multiply all the terms by the denominator
x^2*2+13x-42*2=0
We add all the numbers together, and all the variables
x^2*2+13x-84=0
Wy multiply elements
2x^2+13x-84=0
a = 2; b = 13; c = -84;
Δ = b2-4ac
Δ = 132-4·2·(-84)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-29}{2*2}=\frac{-42}{4} =-10+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+29}{2*2}=\frac{16}{4} =4 $
| 107-a9=1a | | x^2-3=2(x+5) | | x(2x–2)+(x–1)=0 | | 700(1+x)^12=1400 | | 4x3+-24x2+-18=0 | | Z3+j3=0 | | 17x^2+4x-160=0 | | (12-y)+4y=30 | | 9x=28-5x | | 1/2+2x+5=100 | | 1/2+2x+5=1 | | 13n^2-16n-17=0 | | -6m-11=100 | | -12m-15=75 | | 5=9x-58 | | 2^x*2^(x+1)=10 | | (2^x)*2^(x+1)=10 | | (2^x)*2^x+1=10 | | 11-29=-6x | | 2^x*2^x+1=10 | | 9x=-40+85 | | 5^2x+4=5^x+1 | | 3a^2-9a-84=0 | | 16/2a=-8 | | 2x/8-x/10=19 | | (1+x)^8=1.8 | | (3y2+14)(3y2–14)=0 | | 4x^2-5+8x=0 | | 4(x•3)=180/3 | | 12x+25-35=14X+22X-2 | | (X+1)÷5=x÷10 | | 25(x+4)÷5=21×8÷7 |